
3. daisy:35 (Barnum, Sean)

4. daisy:345 (Gegick, Michael)

8. All rights reserved. It is reprinted with permission from Addison-Wesley Professional.

Least Privilege
Sean Barnum, Cigital, Inc. [vita3]
Michael Gegick, Cigital, Inc. [vita4]

Copyright © 2005 Cigital, Inc.

2005-09-14

Only the minimum necessary rights should be assigned to a subject that requests access to a resource and
should be in effect for the shortest duration necessary (remember to relinquish privileges). Granting
permissions to a user beyond the scope of the necessary rights of an action can allow that user to obtain
or change information in unwanted ways. Therefore, careful delegation of access rights can limit
attackers from damaging a system.

Detailed Description Excerpts

According to Saltzer and Schroeder [Saltzer 75] in "Basic Principles of Information Protection," page 9:

Least privilege: Every program and every user of the system should operate using the least set of
privileges necessary to complete the job. Primarily, this principle limits the damage that can result
from an accident or error. It also reduces the number of potential interactions among privileged
programs to the minimum for correct operation, so that unintentional, unwanted, or improper uses
of privilege are less likely to occur. Thus, if a question arises related to misuse of a privilege, the
number of programs that must be audited is minimized. Put another way, if a mechanism can
provide "firewalls," the principle of least privilege provides a rationale for where to install the
firewalls. The military security rule of "need-to-know" is an example of this principle.

According to Bishop [Bishop 03] in Chapter 13, "Design Principles," Section 13.2.1, "Principle of Least
Privilege," pages 343-344:8

This excerpt is from the book Computer Security: Art and Science, written by Matt Bishop, ISBN
0-201-44099-7, copyright 2003.

This principle restricts how privileges are granted.

Definition 13-1. The Principle of Least Privilege states that a subject should be given only those
privileges needed for it to complete its task.

If a subject does not need an access right, the subject should not have that right. Further, the
function of the subject (as opposed to its identity) should control the assignment of rights. If a
specific action requires that a subject's access rights be augmented, those extra rights should be
relinquished immediately upon completion of the action. This is the analogue of the "need to
know" rule: if the subject does not need access to an object to perform its task, it should not have
the right to access that object. More precisely, if a subject needs to append to an object, but not to
alter the information already contained in the object, it should be given append rights and not
write rights.

Least Privilege 1
ID: 351 | ######: 4 | ####: 07.06.06 15:22:56

daisy:35
daisy:345


9. All rights reserved. It is reprinted with permission from Addison-Wesley Professional.

10. Saltzer, Jerome H. & Schroeder, Michael D. "The Protection of Information in Computer Systems." Proceedings of the
IEEE 63, 9 (September 1975): 1278-1308.

In practice, most systems do not have the needed granularity of privileges and permissions to
apply this principle precisely. The designers of security mechanisms then apply this principle as
best they can. In such systems, the consequences of security problems are often more severe than
the consequences on systems which adhere to this principle.

This principle requires that processes should be confined to as small a protection domain as
possible.

Example 1

The UNIX operating system does not apply access controls to the user root. That user can
terminate any process and read, write, or delete any file. Thus, users who create back-ups can also
delete files. The administrator account on Windows has the same powers.

Example 2

A mail server accepts mail from the Internet, and copies the messages into a spool directory; a
local server will complete delivery. It needs rights to access the appropriate network port, to create
files in the spool directory, and to alter those files (so it can copy the message into the file, rewrite
the delivery address if needed, and add the appropriate "Received" lines). It should surrender the
right to access the file as soon as it has completed writing the file into the spool directory, because
it does not need to access that file again. The server should not be able to access any user's files,
or any files other than its own configuration files.

According to Viega and McGraw [Viega 02] in Chapter 5, "Guiding Principles for Software Security,"
in "Principle 4: Follow the Principle of Least Privilege" from pages 100-103:9

The principle of least privilege states that only the minimum access necessary to perform an
operation should be granted, and that access should be granted only for the minimum amount of
time necessary. (This principle was introduced by Saltzer and Schroeder.10)

When you give out access to parts of a system, there is always some risk that the privileges
associated with that access will be abused.

This problem is starting to become common in security policies that ship with products intended
to run in a restricted environment. Some vendors offer applications that work as Java applets.
Applets usually constitute mobile code, which a web browser treats with suspicion by default.
Such code is run in a sandbox, where the behavior of the applet is restricted based on a security
policy that a user sets. Vendors rarely practice the principle of least privilege when they suggest a
policy to use with their code, because doing so would take a lot of effort on their part. It's far
easier to just ship a policy that says, "let my code do anything at all." People will generally install
vendor-supplied security policies, maybe because they trust the vendor, or maybe because it's too
much hassle to figure out what security policy does the best job of minimizing the privileges that
must be granted to the vendor's application.

Laziness often works against the principle of least privilege. Don't let that happen in your code.

Example 1

For example, let's say you were to go on vacation, and give a friend the key to your home,
just to feed pets, collect mail, etc. While you may trust a friend, there is always the
possibility that there will be a party in your house without your consent, or that something

Least Privilege 2
ID: 351 | ######: 4 | ####: 07.06.06 15:22:56



else will happen that you don't like. Whether or not you trust your friend, there's really no
need to put yourself at risk by giving more access than necessary. For example, if you don't
have pets, but only needed a friend to occasionally pick up our mail, you should relinquish
only the mailbox key. While your friend might find a good way to abuse that privilege, at
least you don't have to worry about the possibility of additional abuse. If you give out the
house key unnecessarily, all that changes.

Similarly, if you do get a house sitter while you're on vacation, you aren't likely to let that
person keep your keys when you're not on vacation. If you do, you're setting yourself up for
additional risk. Whenever a key to your house is out of your control, there's a risk of that
key getting duplicated. If there's a key outside your control, and you're not home, then
there's the risk that the key is being used to enter your house. Any length of time when
someone has your key and is not being supervised by you constitutes a window of time in
which you are vulnerable to an attack. You want to keep such windows of vulnerability as
short as possible, in order to minimize your risks.

Example 2

Another good real-world example appears in the security clearance system of the U.S.
government; in particular with the notion of "need to know". If you have clearance to see
any secret document whatsoever, you still can't demand to see any secret document that you
know exists. If you could, it would be very easy to abuse the security clearance level.
Instead, people are only allowed to access documents that are relevant to whatever task they
are supposed to perform.

Example 3

Some of the most famous violations of the principle of least privilege exist in UNIX
systems. For example, in UNIX systems, root privileges are necessary to bind a program to
a port number less than 1024. For example, to run a mail server on port 25, the traditional
SMTP port, a program needs the privileges of the root user. However, once a program has
set up shop on port 25, there is no compelling need for it to ever use root privileges again.
A security-conscious program relinquishes root privileges as soon as possible, and will let
the operating system know that it should never require those privileges again in this
execution (see Chapter 8 [in Building Secure Software] for a discussion of privileges). One
large problem with many e-mail servers is that they don't give up their root permissions
once they grab the mail port (Sendmail is a classic example). Therefore, if someone ever
finds a way to trick such a mail server into doing something nefarious, it will be able to get
root. So if a malicious attacker were to find a suitable stack overflow in Sendmail (see
Chapter 7 [in Building Secure Software]), that overflow could be used to trick the program
into running arbitrary code as root. Given root permission, anything valid the attacker tries
will succeed. The problem of relinquishing privilege is especially bad in Java, since there is
no operating-system independent way to give up permissions.

Example 4

Another common scenario involves a programmer who may wish to access some sort of
data object, but only needs to read from the object. Let's say the programmer actually
requests more privileges than necessary, for whatever reason. Programmers do this to make
life easier. For example, one might say, "Someday I might need to write to this object, and
it would suck to have to go back and change this request." Insecure defaults might lead to a
violation here, too. For example, there are several calls in the Windows API for accessing
objects that grant all access if you pass "0" as an argument. In order to get something more
restrictive, you'd need to pass a bunch of flags (OR'd together). Many programmers will

Least Privilege 3
ID: 351 | ######: 4 | ####: 07.06.06 15:22:56



just stick with the default, as long as it works, since that's easiest.

According to Howard and LeBlanc [Howard 02] in Chapter 3, "Security Principles to Live By," in "Use
Least Privilege" from pages 60-61:

All applications should execute with the least privilege to get the job done and no more. I often
analyze products that must be executed in the security context of an administrative account--or,
worse, as a service running as the Local System account-when, with some thought, the product
designers could have not required such privileged accounts. The reason for running with least
privilege is quite simple. If a security vulnerability is found in the code and an attacker can inject
code into your process, make the code perform sensitive tasks, or run a Trojan horse or virus, the
malicious code will run with the same privileges as the compromised process. If the process is
running as an administrator, the malicious code runs as an administrator. This is why we
recommend people do not run as a member of the local administrators group on their computers,
just in case a virus or some other malicious code executes.

Go on, admit it: you're logged on to your computer as a member of the local administrators group,
aren't you" I'm not. I haven't been for over three years, and everything works fine. I write code, I
debug code, I send e-mail, I sync with my Pocket PC, I create documentation for an intranet site,
and do myriad other things. To do all this, you don't need admin rights, so why run as an admin?
(I will admit that when I build a new computer I add myself to the admin group, install all the
applications I need, and then promptly remove myself.)

When you create your application, write down what resources it must access and what special
tasks it must perform. Examples of resources include files and registry data; examples of special
tasks include the ability to log user accounts on to the system, debug processes, or backup data.
Often you'll find you do not require many special privileges or capabilities to get any tasks done.
Once you have a list of all your resources, determine what might need to be done with those
resources. For example, a user might need to read and write to the resources but not create or
delete them. Armed with this information, you can determine whether the user needs to run as an
administrator to use your application. The chances are good that she does not.

A common use of least privilege again involves banks. The most valued part of a bank is the
vault, but the tellers do not generally have access to the vault. That way an attacker could threaten
a teller to access the vault, but the teller simply won't know how to do it.

For a humorous look at the principle of least privilege, refer to "If we don't run as admin, stuff
breaks" in Appendix B [in Writing Secure Code], "Ridiculous Excuses We've Heard." Also, see
Chapter 7 [in Writing Secure Code] for a full account of how you can often get around requiring
dangerous privileges.

Tip: If your application fails to run unless the user (or service process identity) is an administrator
or the system account, determine why. Chances are good that elevated privileges are unnecessary.

According to NIST [NIST 01] in Section 3.3, "IT Security Principles," from page 16:

Implement least privilege.

The concept of limiting access, or "least privilege," is simply to provide no more authorizations
than necessary to perform required functions. This is perhaps most often applied in the
administration of the system. Its goal is to reduce risk by limiting the number of people with
access to critical system security controls; i.e., controlling who is allowed to enable or disable
system security features or change the privileges of users or programs. Best practice suggests it is
better to have several administrators with limited access to security resources rather than one
person with "super user" permissions.

Least Privilege 4
ID: 351 | ######: 4 | ####: 07.06.06 15:22:56



13. All rights reserved. It is reprinted with permission from CMP Media LLC.

Consideration should be given to implementing role-based access controls for various aspects of
system use, not only administration. The system security policy can identify and define the
various roles of users or processes. Each role is assigned those permissions needed to perform its
functions. Each permission specifies a permitted access to a particular resource (such as "read"
and "write" access to a specified file or directory, "connect" access to a given host and port, etc.).
Unless a permission is granted explicitly, the user or process should not be able to access the
protected resource.

According to Schneier [Schneier 00] in "Security Processes":

Limit Privilege.

Don't give any user more privileges than he absolutely needs to do his job. Just as you wouldn't
give a random employee the keys to the CEO's office, don't give him a password to the CEO's
files.

What Goes Wrong
According to McGraw and Viega [McGraw 03]:13

Little problems can become big problems when they happen in privileged sections of code (think
SUID code or code that must be run as Administrator to work). Sometimes they're introduced by
installation or configuration—something that's impossible for a developer to control. For example,
users commonly install a Web server and run it in a real user process space, without creating a
nonprivileged "nobody" as the target. Also consider that Solaris SUID binaries can be run without
an s-bit set, introducing unacceptable security risk.

Even if you do carefully dole out privilege, relinquishing the privilege isn't always a trivial task.
Nevertheless, do it whenever you can.

References

[Bishop 03] Bishop, Matt. Computer Security: Art and Science. Boston, MA:
Addison-Wesley, 2003.

[Howard 02] Howard, Michael & LeBlanc, David. Writing Secure Code. 2nd edition.
Redmond, WA: Microsoft Press, 2002.

[McGraw 03] McGraw, Gary & Viega, John. "Keep It Simple." Software Development.
CMP Media LLC, May, 2003.

[NIST 01] Engineering Principles for Information Technology Security. Special
Publication 800-27. US Department of Commerce, National Institute of
Standards and Technology, 2001.

[Saltzer 75] Saltzer, Jerome H. & Schroeder, Michael D. "The Protection of Information
in Computer Systems," 1278-1308. Proceedings of the IEEE 63, 9. IEEE,
September 1975.

[Schneier 00] Schneier, Bruce. "The Process of Security." Information Security Magazine.
April, 2000.

Least Privilege 5
ID: 351 | ######: 4 | ####: 07.06.06 15:22:56



1. mailto:copyright@cigital.com

http://infosecuritymag.techtarget.com/archives2000.shtml#apr2000.

[Viega 02] Viega, John & McGraw, Gary. Building Secure Software: How to Avoid
Security Problems the Right Way. Boston, MA: Addison-Wesley, 2002.

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005. Cigital-authored documents are sponsored by the U.S. Department of
Defense under Contract FA8721-05-C-0003. Cigital retains copyrights in all material produced under
this contract. The U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce
these documents, or allow others to do so, for U.S. Government purposes only pursuant to the copyright
license under the contract clause at 252.227-7013.

Permission to reproduce this document and to prepare derivative works from this document for internal
use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.

For information regarding external or commercial use of copyrighted materials owned by Cigital,
including information about “Fair Use,” contact Cigital at copyright@cigital.com1.

####

### ########

Copyright Holder Cigital, Inc.

####

### ########

is-content-area-overview false

Content Areas Knowledge/Principles

SDLC Relevance Design

Workflow State Publishable

Least Privilege 6
ID: 351 | ######: 4 | ####: 07.06.06 15:22:56

http://infosecuritymag.techtarget.com/archives2000.shtml#apr2000
mailto:copyright@cigital.com

